• 热门关键词: 
您当前位置:首页 > 资讯 > LED技术 > 详细内容

LED 高效节能路灯研究报告

时间:2019年12月07日 22:18   来源:阿拉丁照明网   作者:阿拉丁照明网   浏览数:10201次

LED 高效节能路灯研究报告

一、研究背景

随着工业化向信息化时代的转变,照明产业也由电器产品为主向电子产品有序推进。节能需求是最先引爆产品迭代的导火索,当人们意识到新型固态光源给社会带来诸多利好之时,产业得以迅猛发展!

但LED照明产品应用初期由于光源光效偏低,人们通过加大功率维持亮度以满足应用需求,结果却发现照明初始光通量会随之迅速衰减。技术人员经研究发现,解决此类现象除了有效提高光源光效外,还应改进散热系统,使得产品架构更加符合半导体光源物理特点。当光源光效已经提升至170lm/w或更高流明时, 人们普遍认为产品技术的进步, LED照明可以媲美并超越传统光源。随着应用条件的愈加成熟,行业内甚至很少再听到散热、光衰等矮化LED照明产品的声音。 LED照明真的达到了尽善尽美、成熟稳定可以全面替代传统光源了吗?纽约州特洛伊市照明研究中心(LLRC)研究主任NadarajahNarendran说过,一支紧凑型荧光灯,如果搭配一套不合适的光学系统,就会损失高达70?的光输出。同样的,离开了正确的光学系统,LED那被热捧的效能也将不复存在。这一忠告再一次告诫照明从业者, 光源光效提升,散热系统的改进尽管在某种程度上改善了LED照明固有缺陷以及应用上的难题, 但并未从根本上解决高功率照明产品高品质、长寿命、稳定可靠问题,只有进一步深入研究LED做为功能性照明所表现出的“散热的即时性及透过配光实现光源光效利用率最大化”的深层次难题,才可以说从根本上实现了对传统照明的全面替代!为此,我们联合上海市城市设计研究院等相关单位共同组建课题组,对LED功能性照明产品开展深入研究,试图找出LED光源应用层面最优解决方案。

二、研究思路

1、2800K左右色温的LED,其光源光效(100~120Lm/W) 并没有明显的优于高压钠灯(100~120Lm/W)。LED应用于道路照明为什么会节能呢?

2、道路照明的指向目标在于道路,二次配光技术依据道路照明的特性来设计是否能实现节能可能性?

首先来分析道路照明形态与特性:

(1)灯杆安装位置在路边,形成一光照角度不对称的现象;

(2)路幅 : 灯杆高 : 灯距 = 1 : 1 : 3 (截光型灯具),形成一长方形被照射范围;

(3)道路因车流量与车速限制的不同而分不同等级,不同等级的道路有不同的亮度与均匀度的要求。

用传统光源照明性能评价方法评价LED路灯特性既不科学也过于牵强。本研究探讨采用照明利用率(coefficient of utilization)做为LED路灯的评价方法。LED 光源光效(Lm/W)无法真正反映LED路灯的能效。单颗LED在道路照明上其光通量无法单独成为光源;LED集成模块后因其所使用导热基板、热导移系统不同,其出光量并不等同于该LED光通量总和。

因此,LED照明应注重的是灯具光通量而非光源光通量;应注重灯具光效而非光源光效。

然而,灯具光效(Lm/W)并无法真正评价LED路灯的优劣。灯具光效是做为评估一般照明节能的一个重要指标,LED路灯做为功能性照明比一般照明多了个“二次配光”参数,而二次配光越均匀其灯具光效越低;因此仅凭灯具光效难以评价LED路灯的优劣。

因此,照明利用率(路面光通量/灯具光通量)做为关键评价指标被锁定为本次研究的重点,即灯具光通量配置到被照对象上的比率大小才是真正有效的反应功能性照明优劣的关键所在!

在满足照明规范的前提下对标照明利用率,功率成为衡量灯具产品性能的重要指标。功率大小决定了路灯灯具厂家对散热、光学、电源驱动技术水准的高低!

鉴于此,本LED路灯照明系统研究目的试图验证:

(a)LED 路灯的配光效果;

(b)LED 路灯的节能效果;

(c)LED 路灯智能调光的二次节能通过测试路段拟完成目标:

(a)二次配光设计主要在机动车道与SR,照度均匀度须达到 0.35 以上。

(b) 使用色温2800K的LED路灯,在机动车道上的平均照度不低于原高压钠灯的平均照度。

(c)智能调光,通过 0~10V 调光驱动电源,让 LED 路灯与原高压钠灯平均照度相同情形下,测试相同照度节能水平。

三、技术路线

作为照明研发为主的科技型公司,我们清楚地认识到在道路建设中路灯配备和节能的重要性,也看到了LED路灯应用中必须突破的相关技术瓶颈。为此,结合道路照明设计工作提出了LED路灯照明系统的研究课题。联合相关设计单位共同研究开发出实用性的、代表未来先进理念的LED路灯照明系统。

(一)反射式光学

运用反射式光学原理设计导光板的高度与角度,将LED所发出的光导到所预计的地方。反射式光学的优点在于,车行垂直方向配光曲线分布角度可精准设计

, 藉由两侧导光板可使光束分布角度涵盖路幅大一些,灯具效率高,照明利用率高,所以光学总利用率也高,适合灯杆高距比为3.5(含)以内。劣势则在于车行方向二次配光曲线与原LED一次配光曲线约相同,在灯杆高距比超过 3.5,要改变其车行方向的二次配光曲线,需将防水灯壳做成槽镜以增大其车行方向配光曲线的角度或采用自带纵向配光透镜光源来加大纵向出光角。

(二)折射式光学

折射式光学则是利用光波在不同介质(透镜)其行进方向不同的特性,控制LED光至不同地方。折射式光学的优点在,车行方向配光曲线分布很容易设计成最佳行车方向,配光曲线最大值在60~65度。劣势则是路宽方向配光曲线分布角度较不易设计。若是为了设计出窄(涵盖路幅大一些)的配光曲线分布,导致全反射光多,灯具效率较差,虽然照明利用率较高(因为出灯具窄的配光曲线分布光束大部分落在路面内),但是光学总利用率(灯具效率×照明利用率)还是偏低。为了提高灯具效率,因此设计须降低全反射光,所以设计出的路宽方向配光曲线分布角度宽,但是因为出灯具宽的配光曲线分布光束许多落在道路外,导致照明利用率较低,但是最后的光学总利用率(灯具效率×照明利用率)还是偏低。

2014 年LED 量产芯片光效可达160-180Lm/W,跨过了光热平衡点(170Lm/w),热耗损比重已略低于光输出比重。这意味着 LED 的散热问题越来越可被管理,但仍有一半的能量是以热的形式表现,需要被移除以保障 LED 高效运行不光衰。

试验发现,电路铜箔存在瓶颈效应: 电路铜箔厚度增加,系统运作温度降低, 但热阻值也跟着上升,其中平衡点拿捏至关重要。

除此之外,试验发现 LED 早期替代产品还存在以下弊端:

(a)将散热鳍片外露于上,将导致鳍片因风吹雨淋而丧失散热功能。

(b)试验发现,与将热源(光源)分散,将导致 LED 呈现面光源而造成重影(鬼影)现象。

LED 路灯与高压钠灯路灯相同的是光、电部件都需要高防护等级,不同的是:

(a) LED 路灯需要散热,壳体最好能自然对流;

(b) LED 模块需要 IP65 以上的防护等级,保护其硅胶因空气接触而产生氧化变质。

本研究以模块化理念,让各模块独立工作,使得各模块承担各自特有的防护措施,如 LED 模块防护等级高达 IP66,灯具外壳防护等级则不受此限。

四、研究内容

(一)配光(光型较正)

道路照明配光曲线的设计有多种方法,本研究尝试在符合道路照明配光曲线规范(平均照度/亮度、均匀度、眩光限制、环境比等)的前提下,在不同的配光技术中研究如何提高照明利用率、降低灯具功率,以达最节能的目的。

道路照明的配光曲线设计,需考虑车行方向与车行垂直方向(含环境比: 车行道外边 5m 宽状区域内的平均水平照度与相邻的 5m 宽车行道上平均水平照度之比)的需求。

1、车行方向配光曲线最大值在 60~65 度为宜。若最大值在 70 度时,75 度以上的光束会太大导致 眩光值(TI)超标;若最大值低于 60 度时,Ul 不易达标(尤其是主干道 Ul≧0.7)。

(1)灯距为灯高 3 倍时,光束分布角度需涵盖灯距一半以上(约 56 度);

(2)灯距为灯高 3.5 倍时,光束分布角度需涵盖灯距一半以上(约 60 度);

(3)灯距为灯高 4 倍时,光束分布角度需涵盖灯距一半以上(约 63 度);

(4)75 度以上为眩光,因此需避免超过 75 度以上的光束分布。

2、车行垂直方向配光曲线分布角度,以单侧配置一般路幅与灯高相同为例, 光束分布角度需涵盖路幅(约 45 度),所以路宽方向配光曲线分布角度需比 45 度大一些。

(1)若大于45度太多时,光束会落在路面外,导致照明利用率下降;

(2)但是若有要求环境比SR时,则需大于45度,使得光束部份会落在路面外以符合环境比SR要求,但是照明利用率会下降。

(二)散热

热传递的三种形式: 传导 (conduction) 、 对流 (convection) 、 辐射(radiation)。本研究尝试在这三种形式中找出最适合LED的散热技术。

综合分析以上三种方式,经研究发现最适合LED特点的散热方式为传导散热。有些厂家为应对结温,采取加大散热鳍片表比面积,选用热阻效应小的母材并尽力减少母材壁厚等方式增大热熔以提高散热效率,但测试结果发现热沉温度虽有所下降,光衰却并未因热沉加大而明显改善!结温需要有导出过程,即,散热过程必须满足结温速率与传导速率及散发速率相匹配才会达致最好的散热效果!采用热管技术引导散热后经测试,结温平均维持在 75 度左右,接近理想状态。本项研究创新采用热管技术完美的解决了灯具散热问题!